From Crowd Dynamics to Crowd Safety: a Video-Based Analysis
نویسندگان
چکیده
The study of crowd dynamics is interesting because of the various self-organization phenomena resulting from the interactions of many pedestrians, which may improve or obstruct their flow. Besides formation of lanes of uniform walking direction and oscillations at bottlenecks at moderate densities, it was recently discovered that stop-and-go waves [D. Helbing et al., Phys. Rev. Lett. 97, 168001 (2006)] and a phenomenon called “crowd turbulence” can occur at high pedestrian densities [D. Helbing et al., Phys. Rev. E 75, 046109 (2007)]. Although the behavior of pedestrian crowds under extreme conditions is decisive for the safety of crowds during the access to or egress from mass events as well as for situations of emergency evacuation, there is still a lack of empirical studies of extreme crowding. Therefore, this paper discusses how one may study high-density conditions based on suitable video data. This is illustrated at the example of pilgrim flows entering the previous Jamarat Bridge in Mina, 5 kilometers from the Holy Mosque in Makkah, Saudi-Arabia. Our results reveal previously unexpected pattern formation phenomena and show that the average individual speed does not go to zero even at local densities of 10 persons per square meter. Since the maximum density and flow are different from measurements in other countries, this has implications for the capacity assessment and dimensioning of facilities for mass events. When conditions become congested, the flow drops significantly, which can cause stop-and-go waves and a further increase of the density until critical crowd conditions are reached. Then, “crowd turbulence” sets in, which may trigger crowd disasters. For this reason, it is important to operate pedestrian facilities sufficiently below their maximum capacity and to take measures to improve crowd safety, some of which are discussed in the end.
منابع مشابه
A Framework for Video-Driven Crowd Synthesis
We present a framework for video-driven crowd synthesis. Motion vectors extracted from input crowd video are processed to compute global motion paths. These paths encode the dominant motions observed in the input video. These paths are then fed into a behavior-based crowd simulation framework, which is responsible for synthesizing crowd animations that respect the motion patterns observed in th...
متن کاملMobile multimedia crowd service cooperation control protocol based on opportunistic wavelet
In order to improve the quality of multimedia communication and experience, we proposed a crowd service cooperation control protocol based on the opportunistic wavelet model. Firstly, in order to provide real-time and reliable guarantee for mobile multimedia services, we analyze the delay, jitter, and distortion of wireless multimedia streams transmission based on wavelet model. The method of v...
متن کاملCrowd Motion Analysis Based on Social Force Graph with Streak Flow Attribute
Over the past decades, crowd management has attracted a great deal of attention in the area of video surveillance. Among various tasks of video surveillance analysis, crowd motion analysis is the basis of numerous subsequent applications of surveillance video. In this paper, a novel social force graph with streak flow attribute is proposed to capture the global spatiotemporal changes and the lo...
متن کاملNew insights into crowd density analysis in video surveillance systems. (Nouvelles méthodes pour l'étude de la densité des foules en vidéo surveillance)
Along with the widespread growth of surveillance cameras, computer vision algorithms have played a fundamental role in analyzing the large amount of videos. However, most of the current approaches in automatic video surveillance assume that the observed scene is not crowded, and is composed of easily perceptible components. These approaches are hard to be extended to more challenging videos of ...
متن کاملCrowd Flow Characterization with Optimal Control Theory
Analyzing the crowd dynamics from video sequences is an open challenge in computer vision. Under a high crowd density assumption, we characterize the dynamics of the crowd flow by two related information: velocity and a disturbance potential which accounts for several elements likely to disturb the flow (the density of pedestrians, their interactions with the flow and the environment). The aim ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in Complex Systems
دوره 11 شماره
صفحات -
تاریخ انتشار 2008